
Psd { a Portable Scheme Debugger

Pertti Kellom�aki, pk@cs.tut.fi

Tampere University of Technology

Software Systems Lab

Finland

July 9, 1992

1 Introduction

This documents describes the Portabe Scheme Debugger, henceforth referred to

as psd. Psd is a Scheme debugger based on instrumenting source code. It uses

only features described in R4RS [1], so it should run on any R4RS compliant

implementation. It has also succesfully been run on a R3RS implementation as

well.

The motivation behind writing psd was the poor support for debugging

found in many Scheme implementations. Lisp is often boasted to have the best

programming environments around, which can well be true, if you can a�ord a

commercial Common Lisp. Once you get to the free implementations, though,

there is very little compared to what debuggers like gdb can give you in the C

world. (To cover my back, I'll have to admit that I have not had time to look

into all possible free Scheme and Common Lisp implementations, for example

the CMU Common Lisp.)

One of the main abilities that Scheme debuggers usually lack is source level

debugging. For a seasoned lisp hacker a typical lisp debugger with a read-

eval-print loop and access to the call stack can be very e�ective. For novice

programmers, however, who do not have a very good idea of what they are

doing in the �rst place, it can be very confusing. I have been teaching an

introductory programming course and a data structures and algorithms course

in Tampere University of Technology for some years, and I have tried to keep

my students in mind when writing psd.

2 Design Decisions

I have used several Scheme implementations in the past, and I expect to be

using several more in the future. Therefore, I did not want to tie psd into any

1



particular implementation. This causes several drawbacks. For example, it is

not possible to look into the call stack to provide backtrace information, variable

access must be done in a very roundabout way etc. The approach psd takes is

to debug a procedure by instrumenting the original source code.

1

I wanted psd to be just an additional tool for the programming environment,

not an environment in itself. This means, for example, that a procedure must

maintain its interface even though it is being debugged. This way, one can

use psd only on the o�ending procedures, and run the others using the under-

lying implementation. If the implementation provides a compiler, the debugged

procedures can be compiled.

Experience with the way gdb interacts with GNU Emacs shows that this kind

of cooperation can provide a very 
exible environment. Source level debugging

with psd is therefore done the same way: the debugged program emits specially

formatted position information, which Emacs tracks and maintains an arrow

that points to the current source line.

3 Basic Ideas

Before going into implementation details, I'll try to give an overview of the

components that make up psd, as well as what happens when a procedure is

debugged.

Psd consists of three components: some Scheme code for instrumenting the

source, runtime support written in Scheme (the debugger command loop) and

some Emacs Lisp code for interfacing with Emacs. The instrumentation code

is loaded in the same Scheme session as the debugged program, but it could as

well be run as a separate process. The runtime support code must be loaded in

the same session as the debugged program.

Psd adds some functionality to an existing package (cmuscheme.el by Olin

Shivers) that supports running an inferior Scheme session under GNU Emacs.

When the inferior Scheme bu�er is put into psd mode, the instrumentation and

runtime code are read into the Scheme interpreter. The user can now request

for individual procedures or whole �les to be debugged.

The instrumentation code always works on a per �le basis. When a single

de�nition is picked from a source �le, it is written into a temporary �le with

information about where it originally came from. The instrumentation code

reads a Scheme source �le and produces an instrumented version of it. The

instrumented code is then loaded into the Scheme interpreter. The details of

issuing the commands, generating temporary �le names etc. are handled by the

Emacs Lisp code.

1

There is at least one other instrumenting debugger, namely the edebug package for de-

bugging GNU Emacs Lisp, written by Daniel LaLiberte. Undoubtedly there are more that I

don't know of.

2



From the outside, the debugged procedures are equivalent to their undebug-

ged versions, so they can be invoked either from the top level or from within

other procedures. The user can set breakpoints by issuing commands in Emacs

bu�ers containing Scheme code.

When the instrumented code is run, it calls the psd command loop every

time it is about to evaluate an expression. The command loop is called with

position information, procedures for accessing variables and the original expres-

sion packaged up in a lambda form. The command loop takes control, and lets

the user examine variables etc. When the user wants to continue, the com-

mand loop calls the procedure containing the wrapped up expression. Because

this expression is also instrumented, it calls the psd command loop again and so

forth. Each invocation of the command loop returns the value that the wrapped

up expression returned.

When the command loop is called, it checks whether it should just call the

wrapped up expression or break. It stops the execution of the procedure and

prompts for user commands, if it is in a stepping mode, or if the user has set a

breakpoint on the current line.

4 Run Time Errors

A very convinient way to use a debugger is to let the program run until a run

time error occurs, and then examine the state of the program. Psd is di�erent

from usual debuggers in that it relies on the normal execution of the debugged

program. If there is a run time error, the user is either put into the native

debugger of the implementation or back to the top level. Run time errors must

therefore be detected before they happen.

There are two kinds of errors: calling a procdure with a wrong number of

arguments and calling it with arguments of wrong type. Although these can

both be viewed as type errors, there is an importand di�erence. Calling any

procedure with the wrong number of arguments causes a run time error, whereas

calling a procedure with a wrong type of a arguments causes problems only if the

procedure is a primitive procedure. Primitive procedures are known in advance,

so they are fairly easy to handle. Checking the number of arguments for user

procedures would require monitoring all text that is sent to the Scheme process,

and it is not currently done.

Psd detects run time errors by replacing each procedure call with a call to

the procedure psd-apply, with the values of the subexpressions of the original

procedure call. Before applying the procedure to its arguments, psd-apply

checks that the procedure indeed is a procedure. If it is a primitive procedure,

the number and type of arguments are also chekced. If a run time error would

occur, the debugger command loop is called.

3



5 Inherent Limitations of the Instrumenting Ap-

proach

There are some problems with the instrumentation approach to debugging. Ma-

ybe the most important one is the di�culty of accessing dynamic information,

i.e. bactrace information.

It would be possible to give the user access to the backtrace information, by

passing an extra parameter with each procedure call. The debugger would have

access to all the local variables in the call stack as well as information about

where the execution came from by using it. This would, however, require that

all procedures would accept an extra argument, which con
icts with the tool

idea of psd. One could then not simply load a Scheme �le and use it, or write a

de�nition directly to the Scheme top level. This approach would also practically

destroy the bene�t of tail recursion, because every call would use some memory

even in a tail call position.

Another approach to saving backtrace information would be to add the in-

formation in front of a globally visible list every time a procedure is entered,

and removing it when the procedure is exited. This way, the debugged proce-

dures would retain their interface, but tail recursiveness would be lost. This

approach also breaks if one uses call/cc, because it is possible to enter or

exit a procedure without passing thru its whole body. Without call/cc this

approach would work, though, and it is possible that psd will have it in later

versions.

Because the instrumented programs and the runtime support for the debug-

ger live in the same name space, there are some names that can not be used in

the debugged programs. In psd, all the globally visible procedures start with

the pre�x psd-, and variables with the pre�x *psd-.

6 Limitations of the Current Implementation

The current version handles all syntactic forms except =>, delay and unquoting.

Unquoting is supported in the sense that procedures containing quasiquote and

unquotations can de debugged, but it is not possible to step thru an unquotation,

or set a breakpoint within a quasiquotation.

The reader understands symbols, boolean values, strings, vector, characters,

integers, simple 
oats and lists. Fancier numbers like complex numbers etc. are

not supported. They are not very hard to implement, they are just not on top

of the priority list for me. Hex, octal and binary numbers do work, though,

thanks to Edward Briggs.

The instrumented �les are quite large, which may also be a problem. Ty-

pically, however, one is interested in only a small subset of the program at a

time, so in practice this is maybe not signi�cant.

4



One thing that psd is not guaranteed to preserve is the order of evaluation.

Because of the additional code that psd adds to the program, it is possible that

the instrumented version of a procedure call is evaluated in a di�erent order

than the original. If the Scheme implementation used evaluates all arguments

from left to right or right to left, there is no problem. If, however, the order

of evaluation is something more exotic, the order of evaluation may change. In

practice this is probably not a problem, and you deserve all the problems you

get if you write code that depends on the order of evaluation.

7 Instrumentation

Debugging with psd is accomplished by instrumenting the original source code

with calls to the debugger. The current environment is passed to the debugger

in such a manner that it can be examined and modi�ed. The debugger is called

before evaluating each expression.

7.1 Manipulating the Environment

One problem with a portable debugger is that there is no standard way to access

and mutate the variable bindings from \outside" using the names visible in a

given scope. In psd this has been solved by inserting two procedures in all places

where variable binding takes place. These procedures, psd-val and psd-set!

perform the mapping between symbols and the variables they represent. For

example, a let form binding the variables x and y would be instrumented as in

�gure 1.

Note how the scope rules come for free: in the environment where psd-val

and psd-set! are de�ned, the correspondign procedures from the surrounding

scope are visible. The instrumented program also contains global de�nitions of

psd-val and psd-set! that allow the user access global variables de�ned in

the program.

7.2 Instrumentation of Scheme Forms

The syntactic forms that need special consideration are: and, begin, case, cond,

define, do, if, lambda, let*, letrec, let, or, quasiquote, quote, set! and

the procedure call.

The basic strategy is to wrap each expression within a lambda form, e�ecti-

vely delaying its execution. This closure is passed to the debugging procedure,

which allows the user to examine and manipulate the environment before con-

tinuing with the program. Continuing is accomplished simply by calling the

closure.

The debugger also gets the name of the source �le and the starting and

ending positions of the current expression. This is used for showing where

5



(let ((x 1)

(y 2))

<code that uses x and y>)

(let ((x 1)

(y 2))

(let ((psd-val

(lambda (sym)

(case sym

((x) x)

((y) y)

(else (psd-val sym)))))

(psd-set!

(lambda (sym val)

(case ssym

((x) (set! x val))

((y) (set! y val))

(else (psd-set! sym val))))))

<code that uses x and y>))

Figure 1: Accessing variables by name

6



the program execution is in the source code. To be able to show the con-

text (the lexically surrounding procedure de�nitions), a de�nition for procedure

psd-context is placed in front of every procedure de�nition. This might be a

bit of overkill, as the context is usually clear from the source code.

For most of the Scheme forms instrumentation is almost trivial. All that

has to be done is to instrument each subexpression recursively, and wrap a

suitable debugger call around the expression. Forms that introduce new bindings

(the let variants, do and lambda) require an additional let-wrapper to store

psd-val and psd-set!.

8 Accessing Global Variables

Global variables are handled in a similar manner as local variables. When the

psd runtime system is loaded, the variables psd-global-symbol-setters and

psd-global-symbol-accessors are de�ned. After instrumenting a source �le,

psd knows the top level de�nitions for that �le. It then writes two expressions

to the �le. Each one adds a procedure mapping the names of the top level

de�nitions to the actual variables in front of the appropriate list. When the

instrumented �le is loaded these expressions are evaluated. The top level de�-

nitions of psd-set! and psd-val call the procedures one by one, until one of

them indicates success, or all of them fail. In this case they tell the user that

psd does not have access to that variable.

9 Breakpoints and Stepping

Once the code is instrumented, breaking the execution at selected places is

relatively easy. Evaluation of every expression starts with a call to psd-debug,

which checks whether the user should be prompted or not. Breakpoints are

implemented simply by keeping a list of locations (�le name and line number),

and checking if the current location is one of them. Stepping is implemented

with a 
ag that tells psd-debug whether it should stop before and after every

evaluation or not. The Emacs Lisp code takes care of issuing the necessary

commands to the inferior Scheme.

A A Scheme Procedure and its Instrumented

Version

To give an idea of what the instrumented code looks like, this appendix gives a

listing of the result of instrumenting a procedure. The procedure is

(define (foo x)

7



(let ((bar (* 10 x)))

(* x bar)))

And its instrumented version is

(define foo

(let ((psd-context (lambda () (cons 'foo (psd-context)))))

(lambda (x)

(let ((psd-val (lambda (psd-temp)

(case psd-temp

((x) x)

(else (psd-val psd-temp)))))

(psd-set! (lambda (psd-temp psd-temp2)

(case psd-temp

((x) (set! x psd-temp2))

(else (psd-set! psd-temp psd-temp2))))))

(psd-debug psd-val psd-set! psd-context

'(let ((bar (* 10 x))) (* x bar))

2 3 4

(lambda ()

(let ((bar

(psd-debug psd-val psd-set! psd-context

'(* 10 x) 2 3 3

(lambda ()

(psd-apply

((lambda x x)

(psd-debug psd-val psd-set!

psd-context '*

2 3 3

(lambda () *))

(psd-debug psd-val psd-set!

psd-context '10

2 3 3

(lambda () 10))

(psd-debug psd-val psd-set!

psd-context 'x

2 3 3

(lambda () x)))

psd-val psd-set! psd-context

'(* 10 x)

2 3 3 #f)))))

(let ((psd-val (lambda (psd-temp)

(case psd-temp

((bar) bar)

(else (psd-val psd-temp)))))

(psd-set! (lambda (psd-temp psd-temp2)

(case psd-temp

8



((bar) (set! bar psd-temp2))

(else

(psd-set! psd-temp

psd-temp2))))))

(psd-debug psd-val psd-set!

psd-context '(* x bar)

2 4 4

(lambda ()

(psd-apply

((lambda x x)

(psd-debug psd-val psd-set!

psd-context '*

2 4 4

(lambda () *))

(psd-debug psd-val psd-set!

psd-context 'x

2 4 4

(lambda () x))

(psd-debug psd-val psd-set!

psd-context 'bar

2 4 4

(lambda () bar)))

psd-val psd-set!

psd-context

'(* x bar)

2 4 4 #f)))))))))))

(set! psd-global-symbol-accessors

(cons (lambda (psd-temp)

(case psd-temp

((foo) ((lambda x x) foo))

(else #f)))

psd-global-symbol-accessors))

(set! psd-global-symbol-setters

(cons (lambda (psd-temp psd-temp2)

(case psd-temp

((foo) (set! foo psd-temp2))

(else #f)))

psd-global-symbol-setters))

References

[1] Jonathan A. Rees and William Clinger, editors. The revised

4

report on the

algorithmic language Scheme. LISP Pointers, IV(3):1{55, July{September

1992.

9


